Low Inductance Capacitors (SnPb)

GENERAL DESCRIPTION

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL.
A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer sides of its rectangular shape. The image on the right shows the termination differences between an MLCC and an LICC.
When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC.
AVX LICC products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues.

PERFORMANCE CHARACTERISTICS

Capacitance Tolerances	$\mathrm{K}= \pm 10 \% ; \mathrm{M}= \pm 20 \%$
Operation	X7R $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Temperature Range	$\begin{aligned} & \text { X5R }=-55^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \text { X7S }=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
Temperature Coefficient	X7R, X5R $= \pm 15 \%$; X7S $= \pm 22 \%$
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	$\begin{gathered} 4 \mathrm{~V}, 6.3 \mathrm{~V}=6.5 \% \text { max; } 10 \mathrm{~V}=5.0 \% \text { max; } \\ 16 \mathrm{~V}=3.5 \% \text { max; } 25 \mathrm{~V}=3.0 \% \text { max } \end{gathered}$
Insulation Resistance (@+25 ${ }^{\circ} \mathrm{C}$, RVDC)	$100,000 \mathrm{M} \Omega \mathrm{min}$, or $1,000 \mathrm{M} \Omega$ per $\mu \mathrm{F}$ min., whichever is less

HOW TO ORDER

Size
LD16 = 0306
LD17 = 0508
LD18 = 0612

$4=4 V$
$6=6.3 \mathrm{~V}$
$Z=10 \mathrm{~V}$
$Y=16 \mathrm{~V}$
$3=25 \mathrm{~V}$
$5=50 \mathrm{~V}$

Dielectric
$\mathrm{C}=\mathrm{X} 7 \mathrm{R}$
$D=X 5 R$

Capacitance

 Code (In pF)2 Sig. Digits +
Number of Zeros

Capacitance
Tolerance
$K= \pm 10 \%$
$M= \pm 20 \%$

Packaging
Available
$2=7{ }^{\prime \prime}$ Reel
4 = 13" Reel

Thickness
Thickness mm (in) 0.56 (0.022) 0.61 (0.024)
0.76 (0.030)
1.02 (0.040)
1.27 (0.050)

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
TYPICAL IMPEDANCE CHARACTERISTICS

Low Inductance Capacitors (SnPb)

/AVMK
0612/0508/0306 Tin Lead Termination "B"

PREFERRED SIZES ARE SHADED

SIZE	LD16					LD17					LD18				
Soldering	Reflow Only					Reflow Only					Reflow/Wave				
Packaging	All Paper					All Paper					Paper/Embossed				
(L) Length $\underset{(\mathrm{in} .)}{\mathrm{MM}}$	$\begin{gathered} 0.81 \pm 0.15 \\ (0.032 \pm 0.006) \end{gathered}$					$\begin{gathered} 1.27 \pm 0.25 \\ (0.050 \pm 0.010) \\ \hline \end{gathered}$					$\begin{gathered} 1.60 \pm 0.25 \\ (0.063 \pm 0.010) \\ \hline \end{gathered}$				
(M) WidthMM (in.)	$\begin{gathered} 1.60 \pm 0.15 \\ (0.063 \pm 0.006) \end{gathered}$					$\begin{gathered} 2.00 \pm 0.25 \\ (0.080 \pm 0.010) \end{gathered}$					$\begin{gathered} 3.20 \pm 0.25 \\ (0.126 \pm 0.010) \\ \hline \end{gathered}$				
WVDC	6.3	10	16	25	50	6.3	10	16	25	50	6.3	10	16	25	50
Cap 1000	A	A	A	A		S	S	S	S	V	S	S	S	S	V
(pF) 2200	A	A	A	A		S	S	S	S	V	S	S	S	S	V
4700	A	A	A	A		S	S	S	S	V	S	S	S	S	V
Cap 0.010	A	A	A	A		S	S	S	S	V	S	S	S	S	V
(μ F) 0.015	A	A	A	A		S	S	S	S	V	S	S	S	S	W
0.022	A	A	A	A		S	S	S	S	V	S	S	S	S	W
0.047	A	A	A			S	S	S	V	A	S	S	S	S	W
0.068	A	A	A			S	S	S	A	A	S	S	S	v	w
0.10	A	A	'A/			S	S	V	A	A	S	S	S	V	w
0.15	A	A				S	S	V			S	S	S	W	W
0.22	A	A				S	S	A			S	S	V		
0.47						V	V	(A)			S	S	v		
0.68						A	A				V	V	W		
1.0						A	A				V	v	A		
1.5						(A)					W	W			
2.2											A	A			
3.3											(A)				
4.7															
10															
WVDC	6.3	10	16	25	50	6.3	10	16	25	50	6.3	10	16	25	50
SIZE	0306					0508					0612				

Solid $=$ X7R

$$
\nabla \Delta \Delta=x 5 R
$$

LD16 - 0306	
Code	Thickness
A	$0.61(0.024)$

LD17-0508		
Code	Thickness	
S	$0.56(0.022)$	
V	$0.76(0.030)$	
	LD18 - 0612	
Code	Thickness	
A	$1.02(0.040)$	

PHYSICAL DIMENSIONS AND PAD LAYOUT

PHYSICAL CHIP DIMENSIONS mm (in)

	\mathbf{L}	\mathbf{W}	\mathbf{t}
$\mathbf{0 6 1 2}$	1.60 ± 0.25	3.20 ± 0.25	0.13 min. $(0.005 \mathrm{~min})$.
	(0.063 ± 0.010)	(0.126 ± 0.010)	0.13 min.
	$(0.27 \pm 0.25$	2.00 ± 0.25	$0.010)$
$\mathbf{0 3 0 6}$	$0.000 \pm 0.010)$	$(0.005 \mathrm{~min})$.	
	(0.032 ± 0.006)	1.60 ± 0.15	0.13 min. $(0.005 \mathrm{~min})$.

T - See Range Chart for Thickness and Codes

PAD LAYOUT DIMENSIONS mm (in)

	\mathbf{A}	\mathbf{B}	\mathbf{C}
$\mathbf{0 6 1 2}$	$0.76(0.030)$	$3.05(0.120)$	$.635(0.025)$
$\mathbf{0 5 0 8}$	$0.51(0.020)$	$2.03(0.080)$	$0.51(0.020)$
$\mathbf{0 3 0 6}$	$0.31(0.012)$	$1.52(0.060)$	$0.51(0.020)$

