

Filter

3-Pole Filter for WLL Base Station RX Filter

B69843N3557A120

Data Sheet

Application

• RF filter for WLL (Wireless Local Loop)

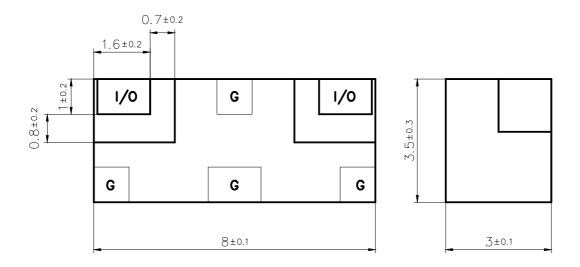
Features

- SMD filter consisting of coupled resonators with stepped impedances
- MgTiO₃-CaTiO₃ (ε_{Γ} = 21 / TC_f =0±10 ppm/K) with a coating of copper (10 μ m) and tin (>5 μ m)
- Excellent reflow solderability, no migration effect due to copper/tin metallization
- ESD insensitivity and ESD protecting due to filter characteristics

Index

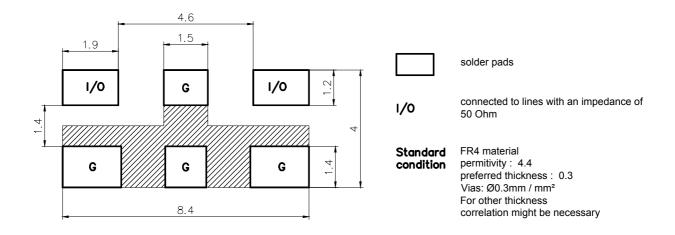
- Page 2 Component drawing
 - Footprint
- Page 3 Characteristics
 - Maximum ratings
 - Typical passband characteristic
- Page 4 Processing information
 - Soldering requirements
 - Delivery mode

ISSUE DATE	05.07.04 ISSUE	P1	PUBLISHER	SAW MWC PD	PAGE	1/4	
------------	----------------	----	-----------	------------	------	-----	--


Filter

3-Pole Filter for WLL Base Station RX Filter

B69843N3557A120


Data Sheet

Component drawing

View from below onto the solder terminals and view from beside

Recommended Footprint

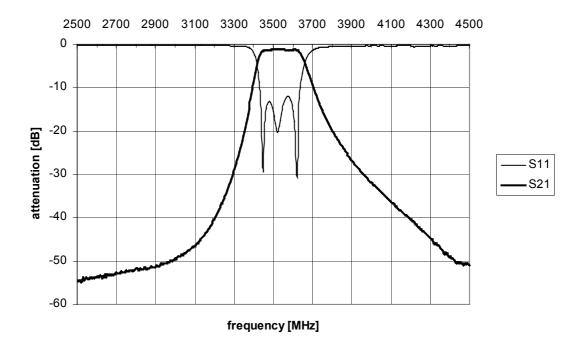
ISSUE DATE

Filter

3-Pole Filter for WLL Base Station RX Filter

B69843N3557A120

Data Sheet


Characteristics

		min.	typ.	max.	
Center frequency	f_{C}	-	3550.0	-	MHz
Insertion loss	α_{IL}		0.9	1.2	dB
Passband	В	120			MHz
Amplitude ripple (peak - peak) at any 10MHz BW				0.4	dB
Standing wave ratio	SWR		1.5	2.0	
Impedance Power	Z		50		Ω
1 6 11	P			1.0	W
Attenuation	α				
at 2588 to 2688 MHz		45	48		dB
at 3900 to 4200 MHz		20	26		dB

Maximum ratings

IEC climatic category (IEC 68-1)		- 40/+ 90/56	
Operating temperature	$T_{\sf op}$	-40 / + 85	°C

Typical passband characteristic

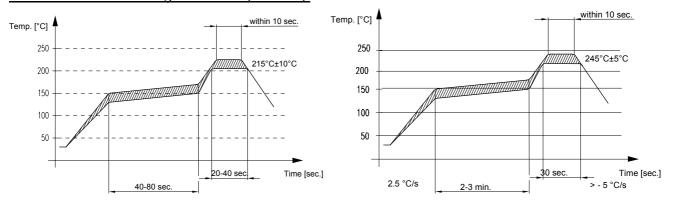
18	SSUE DATE	05.07.04	ISSUE	P1	PUBLISHER	SAW MWC PD	PAGE	3/4	
----	-----------	----------	-------	----	-----------	------------	------	-----	--

Filter

3-Pole Filter for WLL Base Station RX Filter

B69843N3557A120

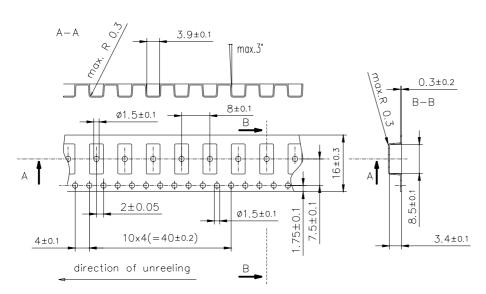
Data Sheet


Processing information

Wettability to IEC 68-2-58: ≥ 75% (after aging)

Soldering Requirements

	Profile for eutectic SnPb solder paste	Profile for leadfree solder paste	
Soldering type	reflow	reflow	
Maximum soldering temperature (measuring point on top surface of the component)		260 (max. 2 sec.) 250 (max. 10 sec.)	°C °C


Recommended soldering conditions (infrared):

Delivery mode

• Blister tape acc. to IEC 286-3, PS, grey

• Pieces/tape: 2000

© EPCOS AG 2001. All Rights Reserved. Reproduction, publication and dissemination of this data sheet, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

The information contained in this data sheet describes the type of component and shall not be considered as guaranteed characteristics. Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

ISSUE DATE 05.07.04 ISSUE	P1 PUBLISHE	R SAW MWC PD PAG	4/4
---------------------------	-------------	------------------	-----